int
. The keys of the elements of an array or slice are non-negative integers which mark the positions of these elements in the array or slice. The non-negative integer keys are often called indexes.
O(1)
, though, generally map element accesses are several times slower than array and slice element accesses. But maps have two advantages over arrays and slices:
[N]T
[]T
map[K]T
where
T
is an arbitrary type. It specifies the element type of a container type. Only values of the specified element type can be stored as element values of values of the container type.
N
must be a non-negative integer constant. It specifies the number of elements stored in any value of an array type, and it can be called the length of the array type. This means the length of an array type is the inherent part of the array type. For example, [5]int
and [8]int
are two distinct array types.
K
is an arbitrary comparable type. It specifies the key type of a map type. Most types in Go are comparable, incomparable types are listed here.
const Size = 32
type Person struct {
name string
age int
}
/* Array types */
[5]string
[Size]int
// Element type is a slice type: []byte
[16][]byte
// Element type is a struct type: Person
[100]Person
/* Slice types */
[]bool
[]int64
// Element type is a map type: map[int]bool
[]map[int]bool
// Element type is a pointer type: *int
[]*int
/* Map types */
map[string]int
map[int]bool
// Element type is an array type: [6]string
map[int16][6]string
// Element type is a slice type: []string
map[bool][]string
// Element type is a pointer type: *int8,
// and key type is a struct type.
map[struct{x int}]*int8
T{...}
, where T
denotes container type (except the zero values of slice and map types). Here are some examples:
// An array value containing four bool values.
[4]bool{false, true, true, false}
// A slice value which contains three words.
[]string{"break", "continue", "fallthrough"}
// A map value containing some key-value pairs.
map[string]int{"C": 1972, "Python": 1991, "Go": 2009}
// The followings slice composite literals
// are equivalent to each other.
[]string{"break", "continue", "fallthrough"}
[]string{0: "break", 1: "continue", 2: "fallthrough"}
[]string{2: "fallthrough", 1: "continue", 0: "break"}
[]string{2: "fallthrough", 0: "break", "continue"}
// The followings array composite literals
// are equivalent to each other.
[4]bool{false, true, true, false}
[4]bool{0: false, 1: true, 2: true, 3: false}
[4]bool{1: true, true}
[4]bool{2: true, 1: true}
[...]bool{false, true, true, false}
[...]bool{3: false, 1: true, true}
...
s mean we want to let compilers deduce the lengths for the corresponding array values.
int
, but it must be a non-negative constant representable as a value of type int
. And if it is typed, its type must be a basic integer type.
var a uint = 1
var _ = map[uint]int {a : 123} // okay
// The following two lines fail to compile,
// for "a" is not a constant key/index.
var _ = []int{a: 100} // error
var _ = [5]int{a: 100} // error
A
can be represented with the composite literal A{}
. For example, the zero value of type [100]int
can be denoted as [100]int{}
. All elements stored in the zero value of an array type are zero values of the element type of the array type.
nil
.
nil
, including later to be introduced function, channel and interface types.
[]T{}
represents a blank slice value (with zero elements) of slice type []T
, it is different from []T(nil)
. The same situation is for map[K]T{}
and map[K]T(nil)
.
package main
import "fmt"
func main() {
pm := &map[string]int{"C": 1972, "Go": 2009}
ps := &[]string{"break", "continue"}
pa := &[...]bool{false, true, true, false}
fmt.Printf("%T\n", pm) // *map[string]int
fmt.Printf("%T\n", ps) // *[]string
fmt.Printf("%T\n", pa) // *[4]bool
}
{...}
.
// A slice value of a type whose element type is
// *[4]byte. The element type is a pointer type
// whose base type is [4]byte. The base type is
// an array type whose element type is "byte".
var heads = []*[4]byte{
&[4]byte{'P', 'N', 'G', ' '},
&[4]byte{'G', 'I', 'F', ' '},
&[4]byte{'J', 'P', 'E', 'G'},
}
var heads = []*[4]byte{
{'P', 'N', 'G', ' '},
{'G', 'I', 'F', ' '},
{'J', 'P', 'E', 'G'},
}
type language struct {
name string
year int
}
var _ = [...]language{
language{"C", 1972},
language{"Python", 1991},
language{"Go", 2009},
}
var _ = [...]language{
{"C", 1972},
{"Python", 1991},
{"Go", 2009},
}
type LangCategory struct {
dynamic bool
strong bool
}
// A value of map type whose key type is
// a struct type and whose element type
// is another map type "map[string]int".
var _ = map[LangCategory]map[string]int{
LangCategory{true, true}: map[string]int{
"Python": 1991,
"Erlang": 1986,
},
LangCategory{true, false}: map[string]int{
"JavaScript": 1995,
},
LangCategory{false, true}: map[string]int{
"Go": 2009,
"Rust": 2010,
},
LangCategory{false, false}: map[string]int{
"C": 1972,
},
}
var _ = map[LangCategory]map[string]int{
{true, true}: {
"Python": 1991,
"Erlang": 1986,
},
{true, false}: {
"JavaScript": 1995,
},
{false, true}: {
"Go": 2009,
"Rust": 2010,
},
{false, false}: {
"C": 1972,
},
}
nil
identifier to check whether or not the slice or map value is a zero value.
package main
import "fmt"
func main() {
var a [16]byte
var s []int
var m map[string]int
fmt.Println(a == a) // true
fmt.Println(m == nil) // true
fmt.Println(s == nil) // true
fmt.Println(nil == map[string]int{}) // false
fmt.Println(nil == []int{}) // false
// The following lines fail to compile.
/*
_ = m == m
_ = s == s
_ = m == map[string]int(nil)
_ = s == []int(nil)
var x [16][]int
_ = x == x
var y [16]map[int]bool
_ = y == y
*/
}
len
function to get the length of a container value, and use the built-in cap
function to get the capacity of a container value. Each of the two functions returns an int
typed result or an untyped result which default type is int
, depending on whether or not the passed argument is a constant expression. As the capacity of any map value is unlimited, the built-in cap
function doesn't apply to map values.
package main
import "fmt"
func main() {
var a [5]int
fmt.Println(len(a), cap(a)) // 5 5
var s []int
fmt.Println(len(s), cap(s)) // 0 0
s, s2 := []int{2, 3, 5}, []bool{}
fmt.Println(len(s), cap(s)) // 3 3
fmt.Println(len(s2), cap(s2)) // 0 0
var m map[int]bool
fmt.Println(len(m)) // 0
m, m2 := map[int]bool{1: true, 0: false}, map[int]int{}
fmt.Println(len(m), len(m2)) // 2 0
}
k
stored in a container value v
is represented with the element indexing syntax form v[k]
.
v[k]
, assume v
is an array or slice,
k
is a constant, then it must satisfy the requirements described above for the indexes in container composite literals. In addition, if v
is an array, the k
must be smaller than the length of the array.
k
is a non-constant value, it must be a value of any basic integer type. In addition, it must be larger than or equal to zero and smaller than len(v)
, otherwise, a run-time panic will occur.
v
is a nil slice, a run-time panic will occur.
v[k]
, assume v
is a map, then k
must be assignable to values of the element type of the map type, and
k
is an interface value whose dynamic type is incomparable, a panic will occur at run time.
v[k]
is used as a destination value in an assignment and v
is a nil map, a panic will occur at run time.
v[k]
is used to retrieve the element value corresponding key k
in map v
, then no panics will occur, even if v
is a nil map. (Assume the evaluation of k
will not panic.)
v[k]
is used to retrieve the element value corresponding key k
in map v
, and the map v
doesn't contain an entry with key k
, v[k]
results in a zero value of the element type of the corresponding map type of v
. Generally, v[k]
is viewed as a single-value expression. However, when v[k]
is used as the only source value expression in an assignment, it can be viewed as a multi-value expression and result a second optional untyped boolean value, which indicates whether or not the map v
contains an entry with key k
.
package main
import "fmt"
func main() {
a := [3]int{-1, 0, 1}
s := []bool{true, false}
m := map[string]int{"abc": 123, "xyz": 789}
fmt.Println (a[2], s[1], m["abc"]) // retrieve
a[2], s[1], m["abc"] = 999, true, 567 // modify
fmt.Println (a[2], s[1], m["abc"]) // retrieve
n, present := m["hello"]
fmt.Println(n, present, m["hello"]) // 0 false 0
n, present = m["abc"]
fmt.Println(n, present, m["abc"]) // 567 true 567
m = nil
fmt.Println(m["abc"]) // 0
// The two lines fail to compile.
/*
_ = a[3] // index 3 out of bounds
_ = s[-1] // index must be non-negative
*/
// Each of the following lines can cause a panic.
_ = a[n] // panic: index out of range
_ = s[n] // panic: index out of range
m["hello"] = 555 // panic: assign to entry in nil map
}
type _slice struct {
elements unsafe.Pointer // referencing underlying elements
len int // length
cap int // capacity
}
len
field of the direct part of a slice indicates the length of the slice, and the cap
field indicates the capacity of the slice. The following picture depicts one possible memory layout of a slice value.
len
to index cap
(exclusive) don't belong to the elements of the slice. They are just some redundant element slots for the depicted slice, but they may be effective elements of other slices or another array.
append
function. The result slice of an append
function call may share starting elements with the base slice or not, depending on the capacity (and length) of the base slice and how many elements are appended.
append
function call,
package main
import "fmt"
func main() {
m0 := map[int]int{0:7, 1:8, 2:9}
m1 := m0
m1[0] = 2
fmt.Println(m0, m1) // map[0:2 1:8 2:9] map[0:2 1:8 2:9]
s0 := []int{7, 8, 9}
s1 := s0
s1[0] = 2
fmt.Println(s0, s1) // [2 8 9] [2 8 9]
a0 := [...]int{7, 8, 9}
a1 := a0
a1[0] = 2
fmt.Println(a0, a1) // [7 8 9] [2 8 9]
}
m
, the following line
m[k] = e
(k, e)
into the map m
if m
doesn't contain an entry with key k
, or modify the element value associated with k
if m
contains an entry with key k
.
delete
function which is used to delete an entry from a map. For example, the following line will delete the entry with key k
from the map m
. If the map m
doesn't contain an entry with key k
, it is a no-op, no panics will occur, even if m
is a nil map.
delete(m, k)
package main
import "fmt"
func main() {
m := map[string]int{"Go": 2007}
m["C"] = 1972 // append
m["Java"] = 1995 // append
fmt.Println(m) // map[C:1972 Go:2007 Java:1995]
m["Go"] = 2009 // modify
delete(m, "Java") // delete
fmt.Println(m) // map[C:1972 Go:2009]
}
append
function to append multiple elements into a base slice and result a new slice. The result new slice contains the elements of the base slice and the appended elements. Please note, the base slice is not modified by the append
function call. Surely, if we expect (and often in practice), we can assign the result slice to the base slice to modify the base slice.
append
function and the subslice feature introduced below together to achieve this goal. Slice element deletions and insertions will be demoed in the below more slice manipulations section. Here, the following example only shows how to use the append
function.
append
function:
package main
import "fmt"
func main() {
s0 := []int{2, 3, 5}
fmt.Println(s0, cap(s0)) // [2 3 5] 3
s1 := append(s0, 7) // append one element
fmt.Println(s1, cap(s1)) // [2 3 5 7] 6
s2 := append(s1, 11, 13) // append two elements
fmt.Println(s2, cap(s2)) // [2 3 5 7 11 13] 6
s3 := append(s0) // <=> s3 := s0
fmt.Println(s3, cap(s3)) // [2 3 5] 3
s4 := append(s0, s0...) // double s0 as s4
fmt.Println(s4, cap(s4)) // [2 3 5 2 3 5] 6
s0[0], s1[0] = 99, 789
fmt.Println(s2[0], s3[0], s4[0]) // 789 99 2
}
append
function is a variadic function. It has two parameters, the second one is a variadic parameter.
...
. We can learn how to call variadic functions from the the article after next.
s4 := append(s0, s0[0], s0[1], s0[2])
s1 := append(s0, []int{7}...)
s2 := append(s1, []int{11, 13}...)
...
manner, the append
function doesn't require the variadic argument must be a slice with the same type as the first slice argument, but their element types must be identical. In other words, the two argument slices must share the same underlying type.
append
call at line 8 will allocate a new underlying memory segment for slice s1
, for slice s0
doesn't have enough redundant element slots to store the new appended element. The same situation is for the append
call at line 14.
append
call at line 10 will not allocate a new underlying memory segment for slice s2
, for slice s1
has enough redundant element slots to store the new appended elements.
s1
and s2
share some elements, s0
and s3
share all elements, and s4
doesn't share elements with others. The following picture depicted the statuses of these slices at the end of the above program.
append
call allocate a new underlying memory segment for the result slice, the capacity of the result slice is compiler dependent. For the standard Go compiler, if the capacity of the base slice is small, the capacity of the result slice will be at least the double of the base slice, to avoid allocating underlying memory segments frequently when the result slice is used as the base slices in later possible append
calls.
append
call to append elements into the base slice. For example,
package main
import "fmt"
func main() {
var s = append([]string(nil), "array", "slice")
fmt.Println(s) // [array slice]
fmt.Println(cap(s)) // 2
s = append(s, "map")
fmt.Println(s) // [array slice map]
fmt.Println(cap(s)) // 4
s = append(s, "channel")
fmt.Println(s) // [array slice map channel]
fmt.Println(cap(s)) // 4
}
append
function call can't be an untyped nil
(up to Go 1.24).
make
Function
make
function to create map and slice values. The built-in make
function can't be used to create array values.
make
function can also be used to create channels, which will be explained in the article channels in Go later.
M
is a map type and n
is an integer, we can use the following two forms to create new maps of type M
.
make(M, n)
make(M)
n
entries without reallocating memory again. The second form only takes one argument, in which case a new empty map with enough space to hold a small number of entries without reallocating memory again. The small number is compiler dependent.
n
may be negative or zero, in which case it will be ignored.
S
is a slice type, length
and capacity
are two non-negative integers, length
is not larger than capacity
, we can use the following two forms to create new slices of type S
. (The types of length
and capacity
are not required to be identical.)
make(S, length, capacity)
make(S, length)
make
function call are initialized as the zero value (of the slice element type).
make
function to create maps and slices:
package main
import "fmt"
func main() {
// Make new maps.
fmt.Println(make(map[string]int)) // map[]
m := make(map[string]int, 3)
fmt.Println(m, len(m)) // map[] 0
m["C"] = 1972
m["Go"] = 2009
fmt.Println(m, len(m)) // map[C:1972 Go:2009] 2
// Make new slices.
s := make([]int, 3, 5)
fmt.Println(s, len(s), cap(s)) // [0 0 0] 3 5
s = make([]int, 2)
fmt.Println(s, len(s), cap(s)) // [0 0] 2 2
}
new
Function
new
function to allocate a value of any type and get a pointer which references the allocated value. The allocated value is a zero value of its type. For this reason, it is a nonsense to use new
function to create map and slice values.
new
function. However, it is seldom to do this in practice, for it is more convenient to use composite literals to allocate arrays.
package main
import "fmt"
func main() {
m := *new(map[string]int) // <=> var m map[string]int
fmt.Println(m == nil) // true
s := *new([]int) // <=> var s []int
fmt.Println(s == nil) // true
a := *new([5]bool) // <=> var a [5]bool
fmt.Println(a == [5]bool{}) // true
}
package main
import "fmt"
func main() {
a := [5]int{2, 3, 5, 7}
s := make([]bool, 2)
pa2, ps1 := &a[2], &s[1]
fmt.Println(*pa2, *ps1) // 5 false
a[2], s[1] = 99, true
fmt.Println(*pa2, *ps1) // 99 true
ps0 := &[]string{"Go", "C"}[0]
fmt.Println(*ps0) // Go
m := map[int]bool{1: true}
_ = m
// The following lines fail to compile.
/*
_ = &[3]int{2, 3, 5}[0]
_ = &map[int]bool{1: true}[1]
_ = &m[1]
*/
}
package main
import "fmt"
func main() {
type T struct{age int}
mt := map[string]T{}
mt["John"] = T{age: 29} // modify it as a whole
ma := map[int][5]int{}
ma[1] = [5]int{1: 789} // modify it as a whole
// The following two lines fail to compile,
// for map elements can be modified partially.
/*
ma[1][1] = 123 // error
mt["John"].age = 30 // error
*/
// Accesses are okay.
fmt.Println(ma[1][1]) // 789
fmt.Println(mt["John"].age) // 29
}
package main
import "fmt"
func main() {
type T struct{age int}
mt := map[string]T{}
mt["John"] = T{age: 29}
ma := map[int][5]int{}
ma[1] = [5]int{1: 789}
t := mt["John"] // a temporary copy
t.age = 30
mt["John"] = t // overwrite it back
a := ma[1] // a temporary copy
a[1] = 123
ma[1] = a // overwrite it back
fmt.Println(ma[1][1], mt["John"].age) // 123 30
}
baseContainer
is an array or slice):
baseContainer[low : high] // two-index form
baseContainer[low : high : max] // three-index form
baseContainer[low : high : cap(baseContainer)]
low
, high
and max
indexes must satisfy the following relation requirements.
// two-index form
0 <= low <= high <= cap(baseContainer)
// three-index form
0 <= low <= high <= max <= cap(baseContainer)
low
and high
indexes can be both larger than len(baseContainer)
, as long as the above relations are all satisfied. But the two indexes must not be larger than cap(baseContainer)
.
baseContainer
is a nil slice and all indexes used in the expression are zero. The result slice derived from a nil slice is still a nil slice.
high - low
, and the capacity of the result derived slice is equal to max - low
. The length of a derived slice may be larger than the base container, but the capacity will never be larger than the base container.
low
index is equal to zero, it can be omitted, either for two-index or three-index forms.
high
is equal to len(baseContainer)
, it can be omitted, but only for two-index forms.
max
can never be omitted in three-index forms.
baseContainer[0 : len(baseContainer)]
baseContainer[: len(baseContainer)]
baseContainer[0 :]
baseContainer[:]
baseContainer[0 : len(baseContainer) : cap(baseContainer)]
baseContainer[: len(baseContainer) : cap(baseContainer)]
package main
import "fmt"
func main() {
a := [...]int{0, 1, 2, 3, 4, 5, 6}
s0 := a[:] // <=> s0 := a[0:7:7]
s1 := s0[:] // <=> s1 := s0
s2 := s1[1:3] // <=> s2 := a[1:3]
s3 := s1[3:] // <=> s3 := s1[3:7]
s4 := s0[3:5] // <=> s4 := s0[3:5:7]
s5 := s4[:2:2] // <=> s5 := s0[3:5:5]
s6 := append(s4, 77)
s7 := append(s5, 88)
s8 := append(s7, 66)
s3[1] = 99
fmt.Println(len(s2), cap(s2), s2) // 2 6 [1 2]
fmt.Println(len(s3), cap(s3), s3) // 4 4 [3 99 77 6]
fmt.Println(len(s4), cap(s4), s4) // 2 4 [3 99]
fmt.Println(len(s5), cap(s5), s5) // 2 2 [3 99]
fmt.Println(len(s6), cap(s6), s6) // 3 4 [3 99 77]
fmt.Println(len(s7), cap(s7), s7) // 3 4 [3 4 88]
fmt.Println(len(s8), cap(s8), s8) // 4 4 [3 4 88 66]
}
s7
and s8
are hosted on a different underlying memory segment than the other containers. The elements of the other slices are hosted on the same memory segment hosting the array a
.
func f() []int {
s := make([]int, 10, 100)
return s[50:60]
}
50
) is larger than the length (10
) of s
, which is allowed.
package main
type S []int
type A [2]int
type P *A
func main() {
var x []int
var y = make([]int, 0)
var x0 = (*[0]int)(x) // okay, x0 == nil
var y0 = (*[0]int)(y) // okay, y0 != nil
_, _ = x0, y0
var z = make([]int, 3, 5)
var _ = (*[3]int)(z) // okay
var _ = (*[2]int)(z) // okay
var _ = (*A)(z) // okay
var _ = P(z) // okay
var w = S(z)
var _ = (*[3]int)(w) // okay
var _ = (*[2]int)(w) // okay
var _ = (*A)(w) // okay
var _ = P(w) // okay
var _ = (*[4]int)(z) // will panic
}
package main
import "fmt"
func main() {
var s = []int{0, 1, 2, 3}
var a = [3]int(s[1:])
s[2] = 9
fmt.Println(s) // [0 1 9 3]
fmt.Println(a) // [1 2 3]
_ = [3]int(s[:2]) // panic
}
copy
Function
copy
function to copy elements from one slice to another, the types of the two slices are not required to be identical, but their element types must be identical. In other words, the two argument slices must share the same underlying type. The first parameter of the copy
function is the destination slice and the second one is the source slice. The two parameters can overlap some elements. copy
function returns the number of elements copied, which will be the smaller one of the lengths of the two parameters.
copy
function to copy elements between two arrays or between an array and a slice.
package main
import "fmt"
func main() {
type Ta []int
type Tb []int
dest := Ta{1, 2, 3}
src := Tb{5, 6, 7, 8, 9}
n := copy(dest, src)
fmt.Println(n, dest) // 3 [5 6 7]
n = copy(dest[1:], dest)
fmt.Println(n, dest) // 2 [5 5 6]
a := [4]int{} // an array
n = copy(a[:], src)
fmt.Println(n, a) // 4 [5 6 7 8]
n = copy(a[:], a[2:])
fmt.Println(n, a) // 2 [7 8 7 8]
}
copy
function can be used to copy bytes from a string to a byte slice.
copy
function call can be an untyped nil
value (up to Go 1.24).
for key, element = range aContainer {
// use key and element ...
}
for
and range
are two keywords, key
and element
are called iteration variables. If aContainer
is a slice or an array (or an array pointer, see below), then the type of key
must be built-in type int
.
=
can be a short variable declaration sign :=
, in which case the two iteration variables are both two new declared variables which are only visible within the for-range
code block body, if aContainer
is a slice or an array (or an array pointer), then the type of key
is deduced as int
.
for
loop block, each for-range
loop block creates two code blocks, an implicit one and an explicit one which is formed by using {}
. The explicit one is nested in the implicit one.
for
loop blocks, break
and continue
statements can also be used in for-range
loop blocks,
package main
import "fmt"
func main() {
m := map[string]int{"C": 1972, "C++": 1983, "Go": 2009}
for lang, year := range m {
fmt.Printf("%v: %v \n", lang, year)
}
a := [...]int{2, 3, 5, 7, 11}
for i, prime := range a {
fmt.Printf("%v: %v \n", i, prime)
}
s := []string{"go", "defer", "goto", "var"}
for i, keyword := range s {
fmt.Printf("%v: %v \n", i, keyword)
}
}
for-range
code block syntax has several variants:
// Ignore the key iteration variable.
for _, element = range aContainer {
// ...
}
// Ignore the element iteration variable.
for key, _ = range aContainer {
element = aContainer[key]
// ...
}
// The element iteration variable is omitted.
// This form is equivalent to the last one.
for key = range aContainer {
element = aContainer[key]
// ...
}
// Ignore both the key and element iteration variables.
for _, _ = range aContainer {
// This variant is not much useful.
}
// Both the key and element iteration variables are
// omitted. This form is equivalent to the last one.
for range aContainer {
// This variant is not much useful.
}
m
, then the following code is guaranteed to clear all entries (but the ones with keys as NaN
) stored in the map m
:
for key := range m {
delete(m, key)
}
clear
builtin function, which may be used to clear all entries of a map, including those with keys as NaN
.)
for
loop block:
for i := 0; i < len(anArrayOrSlice); i++ {
// ... use anArrayOrSlice[i]
}
for-range
loop block (whether =
or :=
before range
)
for key, element = range aContainer {...}
aContainer
. Please note, only the direct part of aContainer
is copied. The container copy is anonymous, so there are no ways to modify it.
aContainer
is an array, then the modifications made on the array elements during the iteration will not be reflected to the iteration variables. The reason is that the copy of the array doesn't share elements with the array.
aContainer
is a slice or map, then the modifications made on the slice or map elements during the iteration will be reflected to the iteration variables. The reason is that the clone of the slice (or map) shares all elements (entries) with the slice (or map).
aContainer
will be assigned (copied) to the iteration variable pair at each iteration step, so the modifications made on the direct parts of the iteration variables will not be reflected to the elements (and keys for maps) stored in aContainer
. (For this fact, and as using for-range
loop blocks is the only way to iterate map keys and elements, it is recommended not to use large-size types as map key and element types, to avoid large copy burdens.)
package main
import "fmt"
func main() {
type Person struct {
name string
age int
}
persons := [2]Person {{"Alice", 28}, {"Bob", 25}}
for i, p := range persons {
fmt.Println(i, p)
// This modification has no effects on
// the iteration, for the ranged array
// is a copy of the persons array.
persons[1].name = "Jack"
// This modification has not effects on
// the persons array, for p is just a
// copy of a copy of one persons element.
p.age = 31
}
fmt.Println("persons:", &persons)
}
0 {Alice 28} 1 {Bob 25} persons: &[{Alice 28} {Jack 25}]
...
// A slice.
persons := []Person {{"Alice", 28}, {"Bob", 25}}
for i, p := range persons {
fmt.Println(i, p)
// Now this modification has effects
// on the iteration.
persons[1].name = "Jack"
// This modification still has not
// any real effects.
p.age = 31
}
fmt.Println("persons:", &persons)
}
0 {Alice 28} 1 {Jack 25} persons: &[{Alice 28} {Jack 25}]
package main
import "fmt"
func main() {
m := map[int]struct{ dynamic, strong bool } {
0: {true, false},
1: {false, true},
2: {false, false},
}
for _, v := range m {
// This following line has no effects on the map m.
v.dynamic, v.strong = true, true
}
fmt.Println(m[0]) // {true false}
fmt.Println(m[1]) // {false true}
fmt.Println(m[2]) // {false false}
}
for-range
loop variant or the traditional for
loop to iterate their elements. In the following example, the loop in function fa
is much less efficient than the loop in function fb
.
type Buffer struct {
start, end int
data [1024]byte
}
func fa(buffers []Buffer) int {
numUnreads := 0
for _, buf := range buffers {
numUnreads += buf.end - buf.start
}
return numUnreads
}
func fb(buffers []Buffer) int {
numUnreads := 0
for i := range buffers {
numUnreads += buffers[i].end - buffers[i].start
}
return numUnreads
}
for-range
loop block (note the sign before before range
is :=
)
for key, element := range aContainer {...}
// forrange1.go
package main
import "fmt"
func main() {
for i, n := range []int{0, 1, 2} {
defer func() {
fmt.Println(i, n)
}()
}
}
$ gotv 1.21. run forrange1.go
[Run]: $HOME/.cache/gotv/tag_go1.21.8/bin/go run forrange1.go
2 2
2 2
2 2
$ gotv 1.22. run forrange1.go
[Run]: $HOME/.cache/gotv/tag_go1.22.1/bin/go run forrange1.go
2 2
1 1
0 0
// forrange2.go
package main
import "fmt"
func main() {
var m = map[*int]uint32{}
for i, n := range []int{1, 2, 3} {
m[&i]++
m[&n]++
}
fmt.Println(len(m))
}
$ gotv 1.21. run forrange2.go
[Run]: $HOME/.cache/gotv/tag_go1.21.8/bin/go run forrange2.go
2
$ gotv 1.22. run forrange2.go
[Run]: $HOME/.cache/gotv/tag_go1.22.1/bin/go run forrange2.go
6
package main
import "fmt"
func main() {
var a [100]int
// Copying a pointer is cheap.
for i, n := range &a {
fmt.Println(i, n)
}
// Copying a slice is cheap.
for i, n := range a[:] {
fmt.Println(i, n)
}
}
for-range
loop is neither ignored nor omitted, then range over a nil array pointer will panic. In the following example, each of the first two loop blocks will print five indexes, however, the last one will produce a panic.
package main
import "fmt"
func main() {
var p *[5]int // nil
for i, _ := range p { // okay
fmt.Println(i)
}
for i := range p { // okay
fmt.Println(i)
}
for i, n := range p { // panic
fmt.Println(i, n)
}
}
package main
import "fmt"
func main() {
a := [5]int{2, 3, 5, 7, 11}
p := &a
p[0], p[1] = 17, 19
fmt.Println(a) // [17 19 5 7 11]
p = nil
_ = p[0] // panic
}
package main
import "fmt"
func main() {
pa := &[5]int{2, 3, 5, 7, 11}
s := pa[1:3]
fmt.Println(s) // [3 5]
pa = nil
s = pa[0:0] // panic
// Should this line execute, it also panics.
_ = (*[0]byte)(nil)[:]
}
len
and cap
functions. Nil array pointer arguments for the two functions will not produce panics.
var pa *[5]int // == nil
fmt.Println(len(pa), cap(pa)) // 5 5
memclr
Optimization
t0
is a literal presentation of the zero value of type T
, and a
is an array or slice which element type is T
, then the standard Go compiler will translate the following one-iteration-variable for-range
loop block
for i := range a {
a[i] = t0
}
memclr
call, generally which is faster than resetting each element one by one.
clear
builtin function, which can be used to clear map entries and reset slice elements. We should try to use that function instead of relying on this optimization to reset slice/array elements. Please read the next section for the clear
builtin function.
clear
function to clear map entries and reset slice elements
clear
builtin function. This function is used to clear map entries and reset slice elements.
package main
import "fmt"
func main() {
s := []int{1, 2, 3}
clear(s)
fmt.Println(s) // [0 0 0]
a := [4]int{5, 6, 7, 8}
clear(a[1:3])
fmt.Println(a) // [5 0 0 8]
m := map[float64]float64{}
x := 0.0
m[x] = x
x /= x // x is NaN now
m[x] = x
fmt.Println(len(m)) // 2
for k := range m {
delete(m, k)
}
fmt.Println(len(m)) // 1
clear(m)
fmt.Println(len(m)) // 0
}
clear
function can even delete map entries with keys as NaN
.
len
and cap
Functions May Be Evaluated at Compile Time
len
or cap
function call is an array or an array pointer value, then the call is evaluated at compile time and the result of the call is a typed constant with type as the built-in type int
. The result can be bound to named constants.
package main
import "fmt"
var a [5]int
var p *[7]string
// N and M are both typed constants.
const N = len(a)
const M = cap(p)
func main() {
fmt.Println(N) // 5
fmt.Println(M) // 7
}
package main
import (
"fmt"
"reflect"
)
func main() {
s := make([]int, 2, 6)
fmt.Println(len(s), cap(s)) // 2 6
reflect.ValueOf(&s).Elem().SetLen(3)
fmt.Println(len(s), cap(s)) // 3 6
reflect.ValueOf(&s).Elem().SetCap(5)
fmt.Println(len(s), cap(s)) // 3 5
}
reflect.SetLen
function must not be larger than the current capacity of the argument slice s
. The second argument passed to the reflect.SetCap
function must not be smaller than the current length of the argument slice s
and larger than the current capacity of the argument slice s
. Otherwise, a panic will occur.
s
is the talked slice, T
is its element type and t0
is a zero value literal representation of T
.
sClone := append(s[:0:0], s...)
s
is blank non-nil slice, then the result slice is nil.
sClone := append([]T(nil), s...)
// The two-line make+copy way.
sClone := make([]T, len(s))
copy(sClone, s)
// Or the following one-line make+append way.
// As of Go Toolchain v1.24.n, this way is a bit
// slower than the above two-line make+copy way.
sClone := append(make([]T, 0, len(s)), s...)
s
is a nil slice, then they both result a non-nil blank slice. However, in practice, we often needn't to pursue the perfection. If we do, then three more lines are needed:
var sClone []T
if s != nil {
sClone = make([]T, len(s))
copy(sClone, s)
}
from
and to
are two legal indexes, from
is not larger than to
, and the to
index is exclusive.
// way 1 (preserve element orders):
s = append(s[:from], s[to:]...)
// way 2 (preserve element orders):
s = s[:from + copy(s[from:], s[to:])]
// Don't preserve element orders:
if n := to-from; len(s)-to < n {
copy(s[from:to], s[to:])
} else {
copy(s[from:to], s[len(s)-n:])
}
s = s[:len(s)-(to-from)]
// "len(s)+to-from" is the old slice length.
temp := s[len(s):len(s)+to-from]
for i := range temp {
temp[i] = t0
}
for-range
loop code block will be optimized as a memclr
call by the standard Go compiler.
i
the index of the element to be removed and i
is a legal index.
// Way 1 (preserve element orders):
s = append(s[:i], s[i+1:]...)
// Way 2 (preserve element orders):
s = s[:i + copy(s[i:], s[i+1:])]
// There will be len(s)-i-1 elements being
// copied in either of the above two ways.
// Don't preserve element orders:
s[i] = s[len(s)-1]
s = s[:len(s)-1]
s[len(s):len(s)+1][0] = t0
// or
s[:len(s)+1][len(s)] = t0
// Assume T is a small-size type.
func DeleteElements(s []T, keep func(T) bool, clear bool) []T {
//result := make([]T, 0, len(s))
result := s[:0] // without allocating a new slice
for _, v := range s {
if keep(v) {
result = append(result, v)
}
}
if clear { // avoid memory leaking
temp := s[len(result):]
for i := range temp {
// t0 is a zero value literal of T.
temp[i] = t0
}
}
return result
}
T
is not a small-size type, then generally we should try to avoid using T
as function parameter types and using two-iteration-variable for-range
block form to iterate slices with element types as T
.
i
and elements
is the slice whose elements are to be inserted.
// One-line implementation:
s = append(s[:i], append(elements, s[i:]...)...)
// The one-line way always copies s[i:] twice and
// might make at most two allocations.
// The following verbose way always copies s[i:]
// once and will only make at most one allocation.
// However, as of Go Toolchain v1.24.n, the "make"
// call will clear partial of just allocated elements,
// which is actually unnecessary. So the verbose
// way is more efficient than the one-line way
// only for small slices now.
if cap(s) >= len(s) + len(elements) {
s = s[:len(s)+len(elements)]
copy(s[i+len(elements):], s[i:])
copy(s[i:], elements)
} else {
x := make([]T, 0, len(elements)+len(s))
x = append(x, s[:i]...)
x = append(x, elements...)
x = append(x, s[i:]...)
s = x
}
// Push:
s = append(s, elements...)
// Unshift (insert at the beginning):
s = append(elements, s...)
e
and slice s
has at least one element.
// Pop front (shift):
s, e = s[1:], s[0]
// Pop back:
s, e = s[:len(s)-1], s[len(s)-1]
// Push front
s = append([]T{e}, s...)
// Push back:
s = append(s, e)
append
to insert elements is often inefficient, for all the elements after the insertion position need to be move backwards, and a larger space needs to be allocated to store all the elements if the free capacity is insufficient. These might be not serious problems for small slices, but for large slices, they often are. So if the number of the elements needing to be moved is large, it is best to use a linked list to do the insertions.
map[K]struct{}
to simulate a set type with element type K
. The size of the map element type struct{}
is zero, elements of values of such map types don't occupy memory space.
The Go 101 project is hosted on Github. Welcome to improve Go 101 articles by submitting corrections for all kinds of mistakes, such as typos, grammar errors, wording inaccuracies, description flaws, code bugs and broken links.
If you would like to learn some Go details and facts every serveral days, please follow Go 101's official Twitter account @zigo_101.
reflect
standard package.sync
standard package.sync/atomic
standard package.